Impact of Glyphosate and GMOs on Soil, Crop, and Animal Health: Failed Promises: Flawed Science

Parliamentary Library Discussion Wellington, New Zealand - February 12, 2015 Don M. Huber, Professor Emeritus, Purdue University

Interacting Factors Determining Nutrient Availability & Disease Severity

Nutrients are:

Components of plant parts as well as

Activators,

Inhibitors,

and Regulators

of Physiological Processes

Many herbicides and pesticides are chelators

Two Factors to Understand 1. Impact of the genetic change **2.** Impact of the Chemical in the plant **A.** Herbicide containing B. Insecticide producing **C.** Other products produced

Some Activities of Glyphosate

Persistent

Organic phosphate

Growth regulator

Mineral Chelater Pathogen Virulence enhancer

Toxicant

Antibiotic

Herbicide

Some of the 291 Enzymes Glyphosate Down Regulates

Enzyme	-Fold change
Taurine ATP-bindingsystem	11.07
Glutamate synthase	6.06
Aminomethyl transferase	5.58
Tyrosine aminotransferase	4.36
Thioredoxin reductase	4.20
NADH dehydroenase	4.04
Riboflavin synthase	3.57
3-phosphoadenosine-5-phosphosulfte reductase	3.75
Membrane bound ATP synthase	3.67
Acetolactate synthase	3.59
Pyridine nucleotide transhydrogenase	3.50
Shikimate kinase	3.36
3-deoxy-D-arabino-heptulosonate-7-phosphatase	3.38
Sulfite reductase	3.19
RNAase	3.18
Glutathione S-transferase	3.04
D-amino acid dehydrogenase	3.00
Glucose-6-phosphate dehydrogenase	2.67
ATP sulfurulase	2.65
5-enolpyruvylshikimate-3-phosphate synthetase (EPSPS)	2.62

Effect of Phosphorus Desorption/Remobilization of Glyphosate in Soil on Nutrient Content

Long-term Effect of Glyphosate

Negative side-effects of long-term glyphosate use, 2008 & 2009

Effect of Residual or 'drift' Glyphosate on % Nutrient Uptake and Translocation by Plants After Eker et al 2006*

Glyphosate accumulates in Foliar application of glyphosate shoot, root and reproductive tissues Systemic movement **Translocated to roots** throughout the plant 15-20% released into soil **Chelation of micronutrients** Glyphosate can accumulate in soil **Compromises** plant (slow to little degradation) disease resistance Residual soil and residue effects / **Stimulates** soilborne **Glyphosate is toxic to beneficials** diseases **N-fixing microbes Mycorrhizae Reduces** nutrient uptake **Biological control organisms Earthworms PGPR** organisms

Schematic of glyphosate interactions in soil

Microbiocidal Activity of Glyphosate

After Zobiole et al., 2010

Glyphosate rate

Effect of Residual Soil Glyphosate on Wheat, WI, 4-27-11 (Adjacent fields, same variety, planted same day, same fertilizer)

Organic Field

Six years of glyphosate 'burndown' use (preplant application)

Herbicide action is by soil-borne fungal pathogens

Glyphosate Increases Disease Susceptibility

GlyphosateGlyphosateNo gSterile soilField soil0After Rahe and Johal, 1988; 1990

No glyphosate Control C

Some Diseases Increased by Glyphosate

Host plant	Disease	Pathogen	
Apple	Canker	Botryosphaeria dothidea	
Banana	Panama	Fusarium oxysporum f.sp. cubens	e
Barley	Root rot	Magnaporthe grisea	
Beans	Root rot	Fusarium solani f.sp. phaseoli	
Bean	Damping off	Pythium spp.	
Bean	Root rot	Thielaviopsis bassicola	
Canola	Crown rot	Fusarium spp.	
Canola	Wilt	Fusarium oxysporum	
Citrus	CVC	Xylella fastidiosa	
Corn	Root and Ear rots	Fusarium spp.	
Cotton	Damping off	Pythium spp.	
Cotton	Bunchy top	Manganese deficiency	Fusarium scab
Cotton	Wilt	F. oxysporum f.sp. vasinfectum	r usarium scap
Grape	Black goo	Phaeomoniella chlamydospora	
Melon	Root rot	Monosporascus cannonbalus	
Soybeans	Root rot, Target spot	Corynespora cassicola	
Soybeans	White mold	Sclerotina sclerotiorium	
Soybeans	SDS	Fusarium solani f.sp. glycines	
Sugar beet	Rots, Damping off	Rhizoctonia and Fusarium	
Sugarcane	Decline	Marasmius spp.	and the second
Tomato	Wilt (New)	Fusarium oxysporum f.sp. pisi	
Various	Canker	Phytophthora spp.	1 ATK
Weeds	Biocontrol	Myrothecium verucaria	
Wheat	Bare patch	Rhizoctonia solani	· ()
Wheat	Glume blotch	Septoria spp.	N N
Wheat	Root rot	Fusarium spp.	
Wheat	Head scab	Fusarium graminearum	Take-all root rot
Wheat	Take-all	Gaeumannomyces graminis	and the second

Control Inoculated Inoculated + glyphosate Corynespora Root Rot of Soybean

Goss' Wilt of Corn

Non-glyphosate Non-GMO

GMO+glyphosate

AS STRACT

Take-all of Wheat

Sudden Death Syndrome

Non-glyphosate

Glyphosate

No glyphosate

Glyphosate

Factors Predisposing to Fusarium Head Scab (Fusarium spp.; Gibberella zeae) Environment was the most important factor in FHB development in eastern Saskatchewan, from 1999 to 2002 Number of Application of glyphosate glyphosate % formulations was the most applications Increase important agronomic factor the previous in head associated with higher FHB levels three years in spring wheat scab None $\mathbf{00}$ Positive association of glyphosate with FHB was not affected by 1 to 2 152 ***

3 to 6

295 ***

environmental conditions as much as that of other agronomic factors...

(Fernandez et al. 2005, *Crop Sci. 45: 1908-1916*) (Fernandez et al., 2007, Crop Sci. 47:1574-1584)

Impact of Glyphosate on Sugar Beet

RhizoctoniaFusariumB4RR varietyB4RR variety"Precautions need to be takenwhen certain soil-borne diseasesare present if weed managementfor sugar beet is to include post-emergence glyphosate treatments."Larson et al., 2006

Poor Boll Retention, Sterile Locules in RR Cotton. WHY?

Glyphosate+Mn

Glyphosate

Mis-shaped cotton boll from glyphosate

Disruption of Plant Hormones by Glyphosate*

	Hormone			
Treatment	Indole acetic acid	Gibberellic acid	Cytokinin	Abscisic acid
Untreated	100 %	100 %	100 %	100 %
Roundup®	4 %	32 %	20 %	183 %
MegaGro**	497 %	103 %	250 %	60 %
RU+MegaGro	47 %	50 %	53 %	112 %

*Research by LT Biosyn., Riverwoods, IL **Natural plant growth stimulant

Genetic Engineering for Glyphosate Tolerance

"Roundup Ready® Genes"

- <u>The technology inserts alternative EPSPS genes</u> (not blocked by glyphosate in *mature* tissue)
- More like a virus infection than plant breeding!
- Nothing in the RR plant affects the glyphosate applied to the plant! - Reduces nutrient uptake and function
- Causes a"Yield Drag"
- Glyphosate is there for the life of the plant
- Inserted "genes" are promiscuous
- Fossil Science: Flawed Theology

Effect of Glyphosate on Lignin, AA, Water Use Efficiency, and Photosynthesis of Glyphosate-Resistant Soybeans Lignin After Zobiole, 2009 (g/plant **13 DAT** umol CO₂ m⁻² s⁻¹ Full rate at one time) 0.6 **36 DAT** 12 Sequential half rate 0.5 10 0.4 8 0.3 6 0.2 0.1 0.0 1800 2400 $\mathbf{0}$ 600 1200 450 675 1350 900 ()Glyphosate (g a.e./ha) **Glyphosate (g a.e./ha)** 1800 **Amino Acids** WUE (ml water/g dry 600 (g/plant) 2500 mass) Full rate at one time 550 500 2000 Sequential half rate 450 1500 400 1000 350 500 300 0.0 250 $\mathbf{0}$ 450 675 900 1350 1800 450 675 900 1350 1800 0 Glyphosate (g a.e./ha) Glyphosate (g a.e./ha)

Does Genetic Engineering Make a Difference? NE Nebraska, 2012 - Severe Drought

Roundup Ready beans + glyphosate twice

Conventional beans No glyphosate

Missed spraying 2nd time

Photo by Howard Vlieger

Does Genetic Engineering Make a Difference? Maurice, Iowa, 2012 - Severe Drought (these two fields have a gravel road between them)

Triple Stak GMO Corn + Glyphosate herbicide Normal, Non-GMO Corn No glyphosate herbicide

Effect of the 2012 Drought on Corn, Western IAConventional cornTriple Stak GMO CornNo glyphosateGlyphosate applied(109 bu/a)(28 bu/a)

Photo: Howard Vlieger

Reduced Nutrient Efficiency of Isogenic RR Soybeans (After Zobiole, 2008)

Isoline	Tissue:	Mn %	<u>Zn</u> %
		/0	
Normal		100	100
Roundup F	Ready®	83	53
RR + glyph	nosate	76	45

Copper, iron, and other essential nutrients Were also lower in the RR isoline and reduced further by glyphosate!

After Zobiole et al., 2009

<u>% Mineral Reduction</u> in Roundup Ready® Soybeans Treated with Glyphosate

Plant tissue	Ca	Mg	Fe	Mn	Zn	Cu
Young leaves	<u>40</u>	<u>28</u>	7	<u>29</u>	NS	NS
Mature leaves	30	34	<u>18</u>	<u>48</u>	30	27
Mature grain	26	<u>13</u>	<u>49</u>	45		
Reduced:						

Yield26%Biomass24%

After Cakmak et al, 2009

% Reduced Nutrient Density in RR versus Non-RR*

Nutrient	Alfalfa	Soy Beans**
Nitrogen	13 %	40 %
Phosphorus	15 %	
Potassium	46 %	16 %
Calcium	17 %	26 %
Magnesium	26 %	30 %
Sulfur	52 %	
Boron	18 %	
Copper	20 %	27 %
Iron	49 %	18 %
Manganese	31 %	48 %
Zinc	18 %	30 %

*Third year, alfalfa, second cutting analysis; Glyphosate applied one time in the previous year

**Mature leaf

Manganese Sufficiency in Bovine Fetus Livers (After Schefers, 2011)

Effect of Glyphosate Drift* on Soybean Leaf, and Seed Iron and Ferric Reductase Activity

Special Considerations in Fertilizing RR Crops

Two factors: 1) Chemical; 2) gene

1. Providing nutrient availability for yield and quality Compensate for reduced plant efficiency [Timing and formulation are important]

2. Detoxifying residual glyphosate

In meristematic root, stem, flower tissues, etc. In soil [Ca, Co, Cu, Mg, Mn, Ni, Zn]

3. Restoring soil microbial activity

Nutrient related (N-fixation, Fe, Mn, Ni, S, Zn, etc.) Disease control related (nutrition, pathogen antagonists, etc.) Biological amendment (N-fixers, PGPRs, etc.)

4. Judicious use of glyphosate

Interaction of seed-applied Fe and glyphosate application on Fe deficiency chlorosis in soybeans; Wisconsin, USA

Glyphosate-induced Fe-deficiency chlorosis

+ glyphosate + Fe seed treatment 19 bu/a + glyphosate 8 bu/a - glyphosate + Fe seed treatment 56 bu/a

Photo: N.C. Hansen, Fort Collins, CO

Vis	Visual chlorosis score		Grain yield	
[1	[1 = green; 5 = yellow]			ı/a)
Treatment	- Fe	+ Fe	- Fe	+ Fe
Control (no herbicide)	3.1	2.8	33	56
Glyphosate	3.7	3.3 Soil Sci. and Plant N	8 utrition 50.97	<u>19</u>

Glyphosate & Manganese Effects on Cotton

Glyphosate @ 22 oz/ac plus ammonium sulfate (AMS)

Glyphosate @ 22 oz/ac plus AMS + Manganese

Effect of glyphosate and Manganese on Cotton Yield (Texas)

Treatment %	6 chlorotic plants	# seed cotton
Conventional herbicide	5	4885
Glyphosate	97	2237
Glyphosate + Mn after Ronnie Ph	2 iillips, 2009	4693

Untreated Check (conventional herbicide)

Citrus Variegated Chlorosis Predisposition to CVC (*Xylella fastidiosa*) by glyphosate

CVC with typical glyphosate weed control

Mn:

Zn:

12.3

13.3

49.0 mg kg⁻¹ DW 57.3 mg kg⁻¹ DW

Grass mulch under trees

After T. Yamada

Glyphosate Resistant Weeds Affect Bee Health & Honey Quality

Pig weed starts this way- and --> Develops into this

Food and Feed Safety Concerns > Nutrient deficiency - Co, Cu, Fe, Mg, Mn, Zn Increased levels of toxic products - Mycotoxins [Fusarium toxins (DON, NIV, ZEA), aflatoxins] - Allergenic proteins and metabolic toxins > Premature ageing, reproductive failure Ecological disruption - bees, amphibians, plant diversity, etc. **Gene flow** - weeds, soil microbes, intestinal microbes Direct toxicity of glyphosate - Cell death, immune failure, disease resistance - Endocrine system, infertility, birth defects, teratogenicity
Erosion of Pig Stomachs, Intestines with GMO Soybean/Corn Feed, Iowa

Carman, Vlieger, 2011, 2013

Normal color

Inflamed, irritated

Mice (below) and Squirels (top) Ignore GMO Corn

9 month exposure in a tree

Isogenic Triple Stax (GMO) corn ears

FRAGILE

Isogenic normal corn ears

Photos: Gilbert Hostetler and Howard Vlieger

U.S. Cattlemen's Association Statement to Congress "Cattle ranchers are facing some puzzling - and, at times, economically devastating problems with pregnant cows and calves. At some facilities, high numbers of fetuses are aborting for no apparent reason. Other farmers successfully raise what look to be normal young cattle, only to learn when the animals are butchered that their carcasses appear old and, therefore, less valuable."

"The sporadic problem is so bad both in the United States and abroad that in some herds around 40-50 percent of pregnancies are being lost."

"Many pesticides and industrial pollutants also possess a hormonal alter ego."

"The viability of this important industry is threatened." Source: Testimony of the Ranchers-Cattlemen Action Legal Fund, United Stock-growers of America, to the Senate Agriculture Committee July 24, 2002.

Effect of Feed Source on Pre-mature Ageing, Iowa, 2010

Why are so many cows losing pregnancies? Losing up to 20 percent of pregnancies is not acceptable.

By Jenks Britt, D. V. M. and Fernando Alvarez, M. V. Z.

	Herd					
Characteristics	A	B	С	D	E	F
Total cows	1,805	1,211	721	2,007	226	1,083
% herd pregnant	47	49	48	61	47	50
1 st service conception	28	27	30	32	41	41
Services for all cows	4.3	4.1	3.6	3.0	2.5	2.4
% pregnant now open	27	25	27	10	6	2

Source: Hoards Dairyman, November 2011, p 751.

Nitrate Poisoning, Grass Tetny, Glyphosate after Swerczek, 2012

Prion-like Protein Causing Reproductive Failure

Miscarriage

Appearance of growth in pure culture

38,250 X magnification

On yeast X 70K

Scanning $EWM \propto 20,000 \text{ M}X$

Prions in Plants

'Malformed' proteins that self-replicate w/out DNA,RNA

Cause 'encephalies' in animals - neurodegenerative

- Bovine spongiform encephalopathy (BSE, cattle), Scrapie (sheep),
- Chronic wasting disease (CWD, deer, etc.), Kuru (humans),
- Creutzfeldt-Jacob Disease (CJD, humans) and four variants, 4 others

Transferred as infectious entities from plants to animals

Normal proteins that prions come from are well defined

- On membranes of normal cells of plants, microbes, animals
- Separated by centrifugation, proteinase K, posphoinositide phospholipase C, sensitivite to heat (autoclaving)

Prions are morphologically similar but also <u>highly pleomorphic</u>

- Extremely stable -resistant to chemical and physical agents
- Host barrier (plant-animal-animal) may not be stable
- Grow by external chelating action (for Cu, etc.) (Alzheimer, Parkinson, ALS, Tauopathies, etc. may involve prions)

Toxicity to and Impact of Glyphosate on Poultry Intestinal Microflora after Clair et al, 2012; Shehata et al, 2012; Krueger et al, 2012

Beneficials (Sensitive) Enterococcus faecalis Enterococcus faecium **Bacillus badius Bifidobacterium adolescentis** Lactobacillus spp. Campylobacter spp. **Geotrichum candidum** Lactococcus lactis subsp. cremoris Lactobacillus delbrueckii subsp. bulgaricus

Pathogens (Resistant) Salmonella entritidis Salmonella gallinarum Salmonella typhimurium **Clostridium perfringens Clostridium botulinum Clostridium deficale** Escherichia coli Enterobacter cloacae

Photos: Dr. Monika Krueger Botulism in Dairy Cattle

Chronic, toxic co-infection, neurotoxin produced Normal stomach in the animal Chronic botulism 0.1 ppm glyphosate ng/ml BoNT

CFU 10⁹ 10⁸ 10⁷ 10⁶ 10⁵ 0 0.1 ppm glyphosate in feed

Environmental Impact of Glyphosate Bee Colony Collapse Disorder

- Lower mineral availability in plant products Malnutrition
- Biocidal to *Lactobacillus/Bifidobacterium* in 'stomach' Starvation & immunity to mites, viruses, bacteria, stress, etc.
 Direct toxicity - endocrine disruption, neurotoxicity Reproduction, disorientation

Effect of Glyphosate on Bee Digestion (After Amos, 2011)

B Normal honey crop A, C = GMO honeycrops

GMO

B

Stingers - Harvested Pollen

В

Some Common Honeybee Concerns

- Colony Collapse Disorder
 - Micronutrient deficient bees
 - Starving with food available
 - Disoriented foraging
 - Pest susceptible
- European Foul Brood
- Varroa mites
- Amoeba and Nosema diseases
- Viruses

'Glyphosate, Brain Damaged Babies, and Yakima Valley - A River Runs Through It" Farm Wars 3/6/14

2

8

6

Noxious aquatic weed control program with Glyphosate ('Rodeo')

1980 1990 2000 2010 2020

"Glyphosate, Three Rivers, and Anencephaly" Yakima Harold Republic

Future historians may well look back and write about our time, not about how many pounds of pesticide we did or did not apply; but about how willing we are to *sacrifice our* children and jeopardize future generations with this massive experiment we call genetic engineering that is based on *false* promises and *flawed science*, just to benefit the "bottom line" of a commercial enterprise.

Dr. Don M. Huber, Professor Emeritus, Purdue University

Direct Toxicity of Glyphosate

Rate (ppm)	System affected	Reference
0.5	Human	cell endocrine disruption	Toxicology 262:184-196, 2009
0.5	Anti-and	lrogenic	Gasner et al, 2009
1.0	Disrupts	aramatase enzymes	Gasnier et al, 2009
1-10	Inhibits	LDH, AST, ALF enzymes	Malatesta et al, 2005
1-10	Damage	s liver, mitochondria, nuclei	Malatesta et al, 2005
2.0	Anti-Oes	strogenic	Gasnier et al, 2009
5.0	DNA da	mage	Toxicology 262:184-196, 2009
5.0	Human	placental, umbilical, embryo	Chem.Res.Toxicol.J. 22:2009
10	Cytotoxi	ic	Toxicology 262:184-196, 2009
10	Multiple	e cell damage	Seralini et al, 2009
10	Total cel	l death	Chem.Res.Toxicol.J. 22:2009
All	Systemic	e throughout body	Andon et al, 2009
1-10	Suppres	s mitochondrial respiration	Peixoto et al, 2005
Parkin	nson' s		El Demerdash et al, 2001
POEA	, AMPA	even more toxic	Seralini et al, 2009

Birth Defects: The Many **Tragedies** at Home

Missbildungen bei Fröschen

(Paganelli et al. 2010)

UNIVERS

Carrasco, 2010, Missbildungen be menschlichen Föten

Glyphosate Residues Allowed in:

Food (Crop)	ppm	Livestock Feed	ppm
Beet, sugar, dried pulp	> 25	Grass, forage,	300
Beet, sugar, roots	10	fodder, hay, group 17	300
Canola, seed, oil	20	Grain, cereal,	100
Corn, sweet	3.5	forage, fodder, straw	100
Grain, cereals(grp 15) 30	Soybean, forage	100
Oil seeds (ex. canola) 40	Soybean, hay	200
Pea, dry	8	Soybean, hulls	120
Peppermint, tops	200	Cattle, meat byproduc	ts 5
Quinoa, grain	5	Hay, alfalfa	400
Shellfish	3		
Soybean seed	20		
Spice (group 19B)	7	Where is the research a	
Sugar, cane	2	Rationale for such disp	arity ?
Sugarcane, molasses	30		
Sweet potatoes	3		
Vegetable, legume	<mark>5</mark> (ex	. Soybean & dry peas)	

Dietary Risk of Pesticides in Food*

(Soybean grain, Serving size = 93 gm = 3.3 oz)

Pesticide	Sample Size	% Positive	Ave (ppm Residue	· ·	% DRI**
AMPA	300	95.7	2.28	0.26-18.8	45.9
Glyphosate	300	90.3	<u>1.94</u>	0.26-20.6	<u>36.8</u>
			4.22	Combined risk:	82.7
Chlorpyrifos	300	2.7	0.005		14.9
All Others	300	1.5	0.009	0.001-0.035	0.1
*USDA, NASS, 2011. **Dietary Risk Index, M2M/CSANR/WSU, 2014					

Increased Probability of Health Impact

Health factor	Glyphosate alone	GMO+Glyphosate
Parkinson' s disease	450 %	160 %
Alzheimer's disease	800 %	300 %
Dementia	1,600 %	400 %
Autistic child	40,000 %	10,000 %
Intestinal infection	200 %	800 %
Hepatitis infection	400 %	600 %
Inflamatory bowel dis	210 %	
Acute kidney failure	120 %	190 %
Lipoprotein metaboli	c death 400 %	280 %
Diabetis prevalence	140 %	180 %
Obesity death	130 %	206 %
Hemorrhagic stroke	300 %	250 %
Hypertension death	280 %	180 %
Thyroid,bladder cand	er 120 %	230 %
Kidney, Liver cancer	140 %	149 %

Is Glyphosate in Our Food?

Glyphosate in Human Breast Milk Mom' S Across America Study - 2014

Glyphosate Concentration (PPB)

0.1 PPM toxic to beneficial GI microbials

Agent Orange Deformities Our 2,4-D Legacies for Viet Nam

Children Diagnosed with Celiac Disease at Alberta Childrens' Hospital

Diseases Increasing in Incidence (Epidemic) (after Fox, 2012; Antoniou et al., 2012, Samsel & Seneff, 2013; Swanson, 2013)

Allergies, Asthma Alzheimer's **Arthritis** Atopic dermatis Autism Autoimmune diseases Bipolar, Attn deficit (ADHD) **Birth defects Bloat** (fatal) **Bowel disease** Cancer (some) Celiac disease Chronic fatigue syndrome **Colitis** Crohn s

Diabetes Difficale diarrhea **Gluten** intolerance *Indigestion Infertility* Inflammatory bowel disease Irritable bowel disease Leaky gut syndrome Liver abnormalities *Miscarriage* Morgellan's (NEW) Multiple sclerosis **Obesity Pancreas abnormalities**

1995 1997 1999 2001 200*Parkinson* 607 2009 2011 Dementia Sudden Infant Death Syndrome

"The Perils of Ignoring History: Big tobacco Played Dirty and Millions Died. How Similar is Big Food?" Brownell, K.D. and Warner, K.E. 2009. The Milbank Quarterly 87:259-294.

"1 in 4 El Salvadore sugar cane workers die of end-stage kidney failure"

"20,000 sugar cane workers die from end-stage Kidney failure in Panama and Niceragua"

"Glyphosate, hard water and nephrotoxic metals: ...Sri Lanka?" Jayasumana et al. 2014. Int. J. Environ. Res. Public Health 11:2125-2147

The Autism Epidemic in the U.S. (US CDC Data)

One in Two in 2025?

The rate was 1 in 10,000 in 1970

Glyphosate and Autism*

Pearson Correlation Coefficient = 0.99

*Dr. Nancy Swanson, <u>http://www.examiner.com/article/</u> data-show-correlations-between-increase-neurological-diseases-and-gmos

Bt insecticide in Mother and Fetal Blood

In January 2012, Bt insecticide was found in 93% of 60 Canadian women tested at the Sherbrooke Medical Center in Montreal. 70% of the 30 fetuses tested had Bt insecticide in their cord blood. Aris et al, 2012

Flawed Safety Evaluations Consistency

<u>1983</u> Tests associated with fraudulent practices

<u>1991</u> Laboratory fraud found on plums, potatoes, grapes, and sugar beets: "Falsifying laboratory notebook entries" "Manually manipulating scientific equipment to produce false reports" "Falsification of test results"

Indictment of the Laboratory Director and 14 employees on 20 felony counts Laboratory President sentenced to five years in prison and fined \$50,000 Laboratory fined \$15.5 million + \$3.7 million restitution

<u>1995</u> "Mode of action (still listed as) unknown"
<u>1995</u> Company terminated study when animals died after feeding GMO corn
<u>1996</u> NY Attorney General charged "False and Misleading advertising"
<u>2003</u> Kawata, Japan. Reported fraudulent safety-testing data
<u>2007</u> Monsanto convicted in France of false advertising (biodegradability)
<u>2009</u> Convicted of false advertising in France
<u>2011</u> India, Gallagher, "Failed International standards"-"woefully inadequate"

Flawed Roundup Ready Safety Evaluations (Mesnage et al, 2014)

Control diet contained: 18 % Roundup Ready maize (NK603) 14.9 % Bt tolerant maize (Mon810) 110 ppb glyphosate 200 ppb AMPA

Dupont's GMO CANOLA "SAFETY" STUDY EXPOSED

AT THE US-CANADA BORDER
Detoxification of Glyphosate

ZIM

Veterinärmedizinische Fakultät

plant properties and responses to physical and biological environmental factors.

Effect of Planting Delay after Glyphosate (Residual Glyphosate in Soil)

Winter Wheat

14 days after glyphosate 'burn-down'

2 days after glyphosate 'burn-do Weiss et al., 2008

Effect of the RR Gene & Herbicide on Root Nodule Mass

After Kremer & Means, 2009

Residual Soil & Crop Sequence Effects of Glyphosate

Severe Verticillium wilt after 1 year of RR corn (left) Idaho, 2009

Mild Verticillium after wheat (no glyphosate, right)

Crop sequence effect on Mn⁺²

Rotation

Extractable Mn

Continuous Corn Roundup Ready® corn Continuous soybeans Soybean, wheat, <u>corn</u> Wheat, corn, <u>soybean</u> 130 ppm
60 ppm
64 ppm
91 ppm
79 ppm

PreemergenceNoglyphosateglyphosate

Preemergence No glyphosate glyphosate

Failure to 'Bulk' of Russet Potatoes

Glyphosate frequency	How applied	No. growers	% Potatoes over 10 oz
None in the previous 2 yrs	None	5	35.3
1-2 in the previous 2 yrs	Burn dow	n 17	20.2
Preceding year	RR crop	5	5.4
	Total	# : 27 A	ve : 20.3

Role of Soil Pathogens in Response to Glyphosate

In Inoculated and Sterile Soil

Glyphosate treated in Field Soil Susceptible biotype Resistant biotype

Ridomil None Ck Ridomil Ck Fungicide Treated

Glyphosate susceptible biotype 4 DAT

Pythium Control Pythium + glyphoste Glyphosate control

Effect of fungicide on Glyphosate-susceptible and Glyphosate-tolerant

Lines

Effect of Glyphosate on Roundup Ready® Corn

Colorado State University, 2007 Mike Bartolo, Sr. Res. Scientist		Response of Roundup Ready® Corn to Zn & Mn,			
	% grain	Yield	% of	2007*	
Treatment	moisture	(bu/a) c	ontrol	NDSU Carrington	
Untreated*	15.6	234 a	100	Treatment Yie	eld (bu/a)
Glyphosate**	15.6	195 d	83	Glyphosate control	144
Glyphosate	15.6	221 b	94	Zn seed Treatment	156
+ Zn, Mn				Foliar applied Zn	158
Glyphosate + Mn, Zn, Fe, F	15.6 3	208 c	89	Foliar applied Zn+Mn	173
*Hand weeded, **1 lb a.i. + 1 pt AMS per acre			Seed + Foliar Zn		
Notes: UTC = genetic potential (with RR gene) Glyphosate reduces genetic potential 39 bu/a			Soil granular Zn sulfate	167	
Application of high Mn & Zn recovers some genetic potential, lower Mn & Zn recovers less		* All treatments received glyphosate	ł		

Herbicide Affects on RR Corn Yield Indiana, 2010

RR Corn Hybrid

Herbicide _	6733HXR	6179VT3	5442VT3	5716A3
Surestart (11")	266 *	216	223	219
Cadet (V6)	227	219	219	213
Laudis (V6)	224	218	214	214
Integrity (pre-E	Z) 231	217	215	204
Glyphosate (V6) 212	207	206	210
Steadfast (V6)	207	204	201	196
Status (V6)	187	195	193	192

*125.6 % of glyphosate yield (yields in bu/a - rounded) All plots were hand weeded

Genetic Engineering Impact on the Genetic Code

- The bases in DNA are cytosine, guanine, adenine and thymine so the code of DNA is written in C's, G's, T's and A's (codons).
- A & T are a "base pair" as are C & G.
- The code used in GM crops is radically changed from that of the recipient and also the named bacterial sources.
- GE changes the bases, spatial, amino acid, 'environmental' and internal

Codon Changes for Genetic Engineering Bt in Corn

[Every highlighted square represents a deliberately altered piece of

genetic codel

		1 P	A 42
L	1 at gga <mark>c</mark> a a c a <mark>a c</mark> c c <mark>a</mark> a a c at c a a <mark>c</mark> g a at g c at t c c <mark>a</mark> t a <mark>c</mark> a a <mark>c</mark> t t <mark>g</mark> a gt a a c c c <mark>a</mark> g a a gt <mark>a c t a</mark> ggt g g a g a a <mark>c t a</mark> g a b a c c c <mark>a</mark> g a a gt a c a c a t a c a a c a c a g a b a c c c g g t t a c	a 100	0
E	101 c <mark>t</mark> c c st c g s c st c t c t t g t c c t t g t c <mark>s</mark> t s g t t t c t g t t c g t g c g g t t c g t g c c s g g t g c t s g t t c t g g g s c t s g t t g s c s g t t g s c s g t g s c t s g t t g s c s g t t t c t g g g g t s	t 200	0
Г	201 c t t t ggt c c a t c t c a a t g g g a t g c a t t x c t g g t g c a a a t t g a g c a g t t g a t c a a c c a g a g g a t c g a a g a g t t c g c a g g a a c c a g g c c a t c t c t a g g t t		
E	301 gaagga <mark>t</mark> tgagcaat ct <mark>e</mark> ta <mark>e</mark> caaat <mark>e</mark> ta <mark>t</mark> geaga <mark>gage</mark> t t e agagagt gggaage <mark>e</mark> gat e et actaa <mark>t</mark> ee agegag gaggagt gggaage	t 400	0
	401 t c s s c g s c s t g s s c s g c g c c t t g s c c s c s g g c t s t c c s t t g t t c s g t g t s c s g c s c s g t g t s c s g t g t s c g t g t s c g t g t s c g t g t c s s g c s t s c s g t g t s c s g c s g t g t s c s g c s g t g t s c s g c s g t g t s c s g c s g t g t s c s g c s g t g t s c s g c s g t g t s c s g t g t s c s g c s g t g t s c s g t g t s c s g t g t s c s g c s g t g t s c s g t s c s g t g t s c s g t g t s c s g t g t s c s g t g t s c s g t g t s c s g t g t s c s g t g t s c s g t g t s c s g c s g t g t s c s g t s c s g t g t g t s c s g t g t	t 500	0
Ŀ	501 t cacct cagcgt gct t cgagacgt t agc gt t agc gt t t gg g ca aaggt gg gg at t cgat g c t g c t a c at caat ag c cgt t a c aa c ga c c t t caat ag c cg t t a caa c ga c c t t caat ag c t g at t a c aa c ga c c t t caat ag c t g at t a c aa c ga c c t t caat ag c t g at t a c aa c ga c c t t caat ag c t g at t a c aa c ga c c t t caat ag c t g at t a c aa c ga c c t t caat ag c t g at t a c aa c ga c c t t caat ag c t g at t a c aa c ga c c t t caat ag c t g at t a c aa c ga c c t t caat ag c t g at t a c aa c ga c c t t caat ag c t g at t ag c aa c aa	1 600	0
E	601 ggu aactac ac gat cat gct gt t ggt acaa cact gg ct t ggag cgt gt ct ggg gt cct gat t ct agag at t ggat t agat acaa cagt t c ag	a 700	0
Г	701 gagaatt gac <mark>e et each gt t</mark> tt ggae att gt gt et et <mark>e</mark> t te ee gaaetat ga <mark>et et e</mark> sgaae et a e e gt gt e e e att gt gt e e e att gagaaa	t 800	3
	801 ct at a c t a ga c c a gt t ct t ga g a a ct t c g g t a gc t t c c gt g gt t ct g c c a a g gt a t c g a a g g t a t c a a g g t a t c a a g g t a t c a a g g t a t c a a ct a ct	9 300	0
L	301 a a c a g c a t a a c t a t c t a c a c c g a t g c t c a c a g a g a g a g a g t a t t a c t g g t c t c a c a g a t c a t g g c c t c t c c a g t t c a g t g g g c c t g a g t t t	a 1000	0
E.	1001 cctttcc <mark>t</mark> ctatggaactatgggaaa <mark>c</mark> gctccacaacaacgtat <mark>c</mark> gttgctcaactaggtcaggg <mark>t</mark> gt <mark>ctatatagaaccttgtct</mark> tccacctt <mark>g</mark> t	a 1100	0
E	1101 cagaagaccctttcaatatcggtatcaaccaaccagcaact <mark>t</mark> tccgttcttgacgg <mark>a</mark> acaga <mark>g</mark> ttcgcctatggaacctc <mark>t</mark> tc <mark>t</mark> aacttgccatccgctgt	1200	0
	1201 təcəgəəə <mark>g</mark> əgcggəəc <mark>it</mark> qətte <mark>cit</mark> tgg <mark>əc</mark> gəəət <mark>eceə</mark> c acagaa <mark>t</mark> əəcəə <mark>t</mark> gtgecəce <mark>e</mark> aggeaaggatt <mark>etee</mark> ca <mark>eagg</mark> att <mark>e</mark> ageea <mark>e</mark> gt	t 1300	0
13	1301 c <mark>c</mark> atgtt <mark>c</mark> cgttc <mark>c</mark> gg a tt <mark>c</mark> agcaacagttccgtgagcatcatcatgttctc <mark>a</mark> tggat <mark>t</mark> catcgtagtgctgagttcaacaatat <mark>c</mark> attc	c 1400	0
E	1401 t t c c t c t c t c t c t c t c t c t	1 1500	0
E	1501 a gaagaactt c <mark>t</mark> cct ggc cagatt <mark>agc</mark> acc <mark>ct c</mark> agagt <mark>t</mark> aac at <mark>c</mark> actg cacca <mark>ct</mark> t ct caaagat at cgt gt cagagatt c gt t acg cat ct accact	a 1600	5
Ŀ	1601 a c t t g c a a t t c c a c a c c t c c a t c g a c g g a a g g c c t a t c a g g g t a a c t t c t c c g c a a c a t g t c a a g c a g c a g c a a c t t g c a a t c c g g c a g c a g c a g c a g c a a c t t g c a a t c c g g c a	9 1700	0
	1701 a s c c g t c g t t c s c t s c t c c c t t c s s c t c t	€ 1800	0
Ŀ	1801 cgtattgagtttgtgcc <mark>t</mark> gcctgaagt <mark>t</mark> acctt <mark>c</mark> gaggc <mark>t</mark> gagta <mark>c</mark>		

Chronic Toxicity of GMO Crop or Roundup®

GMO and/or Roundup cause adverse health effects 50% males & 70% females died prematurely (Tumors developed after 4-7 months vs 23 mo in control) Females = 2-3 X mammary tumors & pituitary disorders Males = kidney & skin tumors, liver & kidney damage All GMO and RU had digestive disorders

Livers (L) UTC; (R) GMO+R

Kidney damage (below) GMO GMO+R RU Mammary cancer: GMO, GMO+RU, RU @ (1 ppb)

Are honey bees in your spray area? Find them at illinoisbees.com

Help preserve the honey and pollination industry of Illinois. Effect of Tillage on Glyphosate Injury & Yield Field History: 8 years Conservation Reserve Program 2 qt blyphosate burndown 2008 1 qt glyphosate on RR corn 2009 1 qt glyphosate burndown 2010

Photos: Nesters Farm Services

Mycotoxins in Straw and Grain

Fusarium spp. act synergistically to cause death of glyphosate-treated plants

- Glyphosate-induced root colonization by *Fusarium* spp.
- Toxins (DON, ZEA) produced in roots are translocated to stem and grain - Well above 'clinically significant' levels!
- Toxin concentrations not always correlated with *Fusarium* damaged grain (FDG) - [Strobilurin fungicides increase mycotoxins]
- Head must be protected for 18 days (10 days after anthesis)

Deoxynivalenol and Zaeralenone				
Concentrations in plant parts				
Toxin (ppm)	Grain	Chaff	<u>St</u> raw	
Deoxynivalenol	4.7	16.9	3.5	
Zaeralenone	4.4	42.9	55.5	

Glyphosate & GMOs in IV feeding and infant formula

.12 PPM

GMOs and Glyphosate Discovered in Kellogg's Froot Loops

Posted on Jan 29 2015 - 4 tipps by Sustainable Pulse

Breaking Lines News **Bushangter** Food

42

chidren

GMO-

USDA.

Plant.

PAL Hate

Comparison as GMO Free USA today published the results of independent lab testing which documented that Kellogg's Froot Loops cereal contains high levels of insecticideproducing genetically engineered corn that is regulated by the EPA.

· PREVIOUS

Birth Defects from Glyphosate in Feed

Annual % Change in Cancers

Target Tissues for glyphosate; Liver Kidney Testicle Hormone system Bone (Ca, Mn chelation?) Thyroid (Mn chelation?)

A Trojan Killer

Simple, subtle, and destructive of all things of value

When a company denies any responsibility for THEIR product, **EVEN WHEN USED** in strict compliance with THEIR Label, doesn't it tell you something about both them and their product?

What the USDA Doesn't Want **YOU to Know About GMO** • High chemical residue in food! • Unknowns - what we don't know? Mode of action Safety Remediation Increased diseases of crops, animals, humans Gene flow - soil, pollen, food, people

Other concerns (?)

- Damage to amphibians
- Killing bee populations
- Reproductive toxicity to many species
- Political misuse against domestic populations in the "War on Drugs"
- If these topics are completely new to you, then you should consider examining the following:
 - The size and weight of the rock that you are living under
 - How far you have your head buried under the sand
 - Media censorship that keeps you ignorant about issues that critically affect your life
 - Why you have placed blinders on yourself, insulating yourself from reality, despite the consequences
- All of the information in this presentation is readily and publically available

Congratulations to GLYPHOSATE toxic chemical of the year!

Glyphosate—no chemical does more on a widespread basis to promote disease:

1.<u>Inhibits cyp450 detoxification</u>: Anything that blocks cyp450 by definition promotes xenobiotic accumulation and adverse drug effects

2. Genotoxic: Causes DNA damage in human cells even when massively diluted

3.<u>Mitochondriopathic</u>: In the combination of Monsanto's Roundup®, causes mitochondrial dysfunction per several in vitro studies, linked to nearly all diseases

4. Excellent tissue penetration: The added solvents, surfactants, and so-called inert chemicals help promote entry into cells

5.<u>Carcinogenic</u>: Activation of estrogen receptors stimulates growth of cancer cells in vitro; would be expected to promote growth of other cancer cells.

6.<u>Estrogenic</u>: Activation of estrogen receptors stimulates growth of cancer cells in vitro; would be expected to promote growth of other cancer cells, as well as promote autoimmunity.

7.<u>Synergistic with GMO-promoted inflammation</u>: Commonly applied to GMO corn which has been shown to promote proliferation of GammaDelta Tcells which promote allergy and autoimmunity, both of which would be exacerbated by 1) inhibition of detoxification, 2) genotoxicity, 3) mitochondrial dysfunction, and 4) estrogenic effects.

8.<u>Unsurpassed political protection</u>: Because of industry influence on politicians who have 1) no scientific training, and 2) receive pay-off money from the chemical industry, glyphosate is used in high doses internationally without concern for long-term effects, even when applied to fields, forests, water supplies and other ecosystems.

9. <u>Widespread exposure via air and water</u>: More than 75% of air and water samples in Mississippi USA are contaminated with glyphosate; that far exceeds the social acceptance of heroin, crack cocaine, tobacco use and second-hand smoke combined. No other chemical achieves such massive population-wide use.

10.<u>Unsurpassed distribution to the population, routinely found in the food supply, especially soy</u>: "GM-soy contains high residues of glyphosate and AMPA..." *Food Chemistry* 2014 Jun

Long-Term Toxicology of Roundup® & Roundup Tolerant Genes (Seralini et al, 2012)

Protocol:

Two-year study - life expectancy of rats Ten treatments with 20 rats each (10 male/10 female) [UTC, 3 rates of Roundup®, GMO feed, GMO+Roundup] Analysed blood & urine, necropsy at end of trial

Results:

GMO and/or Roundup cause adverse health effects 50% males & 70 % females died prematurely (Tumors developed after 4-7 months vs 23 mo in control) Females = 2-3 X mammary tumors & pituitary disorders Males = kidney & skin tumors, liver & kidney damage Digestive disorders

Effect of Glyphosate on E. faecalis & C. botulinum
CFUAfter Krueger et al, 2011ng/ml BoNT

Without glyphosate

With Glyphosate*

*0.01 mg glyphosate ml⁻¹

Photos: Dr. M. Krueger

Birth Defects from Endochrine Hormone Disruption in Mammals

"Underbite and cleft palate are epidemic in human newborns. These malformations on human newborns are similar and comparable to underbites and cleft palate on other mammal young and to short upper bill and holes in the upper bills of hatchling birds. These malformations are definitive symptoms of disruption of the thyroid hormones during development in the womb or egg." (Hoy, 2011)

Tough Love Alternative to Spanking

When it comes to child discipline, most of us are looking for positive alternatives to spanking.

One that worked well when our child was having "one of those moments" was to take them for a car ride.

Some say it's the vibration from the car; others that its the time away from distractions such as TV, etc.

Either way, our kids usually calm down and behave after our car ride together.

Eye-to-eye contact helps a lot too as you can see from one of our sessions.

This works with grandchildren, nieces and nephews as well!

Effect of Late Application of Glyphosa

"Bubble kernel"

After E. Nafziger, Univ. Illinois, 2010

Role of Soil Pathogens in Response to Glyphosate

- Fusarium and Pythium readily colonized susceptible giant ragweed roots when treated with glyphosate
- Resistant Giant Ragweed in unsterile soil were killed by a 4x rate of glyphosate, yet susceptible biotypes were not killed with the same rate in sterile soil.
- Dry weight of susceptible biotypes treated with Ridomil Gold was not changed by glyphosate
- Resistant giant ragweed biotypes were resistant to *Pythium*
- Glyphosate increased susceptibility to *Pythium*

Glyphosate susceptible biotype 4 DAT

Pythium Pythium + Glyphosate Control glyphoste control

Glyphosate treated Susceptible biotype Resistant biotype

Ridomil Ck Ridomil Ck Fungicide Schafer et al, 2009, 2010

Some Plant Pathogens Increased by Glyphosate

Pathogen

Increased:

Botryospheara dothidea Corynespora cassicola Fusarium spp.

Fusarium avenaceum *F. graminearum F. oxysporum f. sp cubense F. oxysporum f.sp (canola) F. oxysporum f.sp. glycines F. oxysporum f.sp. vasinfectum F. solani f.sp. glycines F. solani f.sp. phaseoli F. solani f.sp. Pisi Gaeumannomyces graminis Magnaporthe grisea*

Pathogen

Cercospora spp. Marasmius spp. Monosporascus cannonbalus Myrothecium verucaria Phaeomoniella chlamydospora Phytophthora spp. <u>Pythium</u> spp. <u>Rhizoctonia solani</u> Septoria nodorum Thielaviopsis bassicola Xylella fastidiosa Clavibacter nebraskensis Xanthomonas sterwartii

("Emerging" and "reemerging diseases")

Abiotic: Nutrient deficiency diseases; bark cracking, mouse ear, 'witches brooms'

Goss' Bacterial Wilt of Corn, Midwest 2010 Ear Symptoms

Goss' Bacterial Wilt of Corn, Midwest 2010 Root and Stalk Symptoms

Early stalk rot

Late stalk rot
Goss' Bacterial Wilt of Corn, Midwest 2010 Field and Plant Symptoms

Very susceptible hybrid

U.S. Corn Yields By Year, USDA-NASS 01-2013

Fossil Science: Failed Promises

Genetic Engineering's 'Flat Earth' Basis

What You Should Get from this Presentation

- **1.** An appreciation for the interrelationships in Ag
- 2. How Pesticides work Glyphosate
- 3. What genetic engineering is and isn't
- 4. Impact of GMO & glyphosate on soil health
- 5. Impact on plant health
- **6.** Impact on animal helath
- 7. Impact on human health
- 8. Remediation approaches
- 9. The future

Agriculture is THE basic infrastructure of society

Herbicide action is by soil-borne fungal pathogens Glyphosate Increases Disease Susceptibility

GlyphosateGlyphosateNo glyphosateSterile soilField soilControl

Effect of glyphosate on susceptibility to anthracnose. A) hypersensitive response; b) non-limited response after glyphosate is applied.

After Rahe and Johal, 1988; 1990

Some Plant Pathogens Increased by Glyphosate

Corynespora cassicola Fusarium spp. Phytophthora spp. Pythium spp. Rhizoctonia solani Thielaviopsis bassicola Xylella fastidiosa Myrothecium verucaria F. solani f.sp. Pisi Gaeumannomyces graminis Magnaporthe oryzae

("Emerging" and "reemerging diseases")

Fungal Mn oxidation in soil (increased virulence)

Abiotic: Nutrient deficiency diseases; bark cracking, mouse ear, 'witches brooms', drought stress, chill damage

Understanding the Characteristics of Glyphosate Glyphosate has Changed Agriculture for 30+Years

 <u>A strong chemical chelator</u> Chelates minerals in the spray tank
 <u>Chelates minerals in the plant</u>
 <u>Chelates minerals in the soil</u>
 <u>Reduces: B, Co, Cu, Fe, K, Mg, Mn, N</u> Zn

<u>Glyphosate</u>

Chelating stability constants of glyphosate

	[ML]	[MHL]	[ML2]
etal ion	[M][L]	[M][H][L]	[M][L2]
Mg2+	3.31	12.12	5.47
Ca2+	3.25	11.48	5.87
Mn2+	5.47	12.30	7.80
Fe2+	6.87	12.79	11.18
. Cu2+	11.93	15.85	16.02
^{I,} Fe3+	16.09	17.63	23.00

Glyphosate Immo<mark>bilizes</mark> Manganese in Soybean

Glyphosate + Zn tank mix

Effect of pH on Soil Sorption of Glyphosate (After Farenhorst et al, 2009)

Mn Oxidation/Reduction in Soybean Rhizosphere Soil

Fungal Mn oxidation in soil (increased virulence)

Manganese Oxidation in Soybean Rhizosphere

 In soybean rhizosphere soil (3 wks after glyphosate applied): Mn Reducing Organisms Oxidizing Organisms
 Control (no glyphosate) 7,250* 750
 + Glyphosate 740 13,250
 *Colonies per gram of soil

Effect of the RR Gene & Herbicide on Root Nodule Mass

After Kremer & Means, 2009

Effect of Residual Glyphosate on RR2Y Soybeans, 2010*

Scenarios -Substrates & glyphosate release from grass roots; soil fungi proliferate on grass AND soybean seedling roots; effects of soil residual glyphosate.

* Asgrow RR2Y

After Kremer, 2010

Role of Soil Pathogens in Response to Glyphosate

In Inoculated and Sterile Soil

Glyphosate treated in Field Soil Susceptible biotype Resistant biotype

Ridomil None Ck Ridomil Ck Fungicide Treated

Glyphosate susceptible biotype 4 DAT

Pythium Control Pythium + glyphoste Glyphosate control

Effect of fungicide on Glyphosate-susceptible and Glyphosate-tolerant

Lines

Corynespora Root Rot

An extensive dark brown to black rotting of small lateral roots

Generally considered a root "nibbler"

Especially severe when glyphosate is applied to near-by weeds

Especially severe when glyphosate is applied to the plant

Long, multiseptate spores

Control Inoculated Inoculated + glyphosate

Corynespora cassiicola

Effect of Glyphosate Herbicide on Sudden Death Syndrome of Roundup Ready® Soybeans

No glyphosate Glyphosate

IOW3

Glyphosate

No glyphosate

Impact of Glyphosate on Take-all

Goss' Bacterial Wilt of Corn, Midwest 2010

Root and Stalk Symptoms

Early

Late

Field and Plant Symptoms GMO Normal Bactericide

Photos: Amy Bandy

A Rose Amongst the Thorns - Goss' Wilt, 2010

Same Water, Same Heat, Same Light, Same Soil

Non-GMO, No glyphosate

GMO, plus glyphosate

Photo: A. Bandie

Effect of Surfactants on Goss' & Stewart's Wilt*

GMO for Glyphosate Tolerance (Roundup Ready® Genes)

- <u>The technology inserts alternative EPSPS genes</u> (not blocked by glyphosate in *mature* tissue
- More like a virus infection than plant breeding!
- Nothing in the RR plant affects the glyphosate applied to the plant!
 - Reduces nutrient uptake and function
- Causes a"Yield Drag"
- Glyphosate is there for the life of the plant
- Inserted "genes" are promiscuous

Drought Tolerance of GMO versus Normal Corn, Western Iowa, 2012

Normal Corn, No glyphosate (120 bu/a)

Triple Stak "GMO Corn, Gyphosate applied (30 bu/a)

Photo: Howard Vlieger

Low-boron/seeds

Importance of High Nutrient Seed

normal seeds

After Andre Comeau, 2008

Close up of field symptoms of plant damage in treatments with short waiting times (1 d) after Glyphosate pre-crop application

Poor Boll Retention, Sterile Locules in RR Cotton. WHY?

Glyphosate+Mn Glyphosate

Mis-shaped cotton boll from glyphosate

Disruption of Plant Hormones by Glyphosate*

	Hormone			
Treatment	Indole acetic acid	Gibberellic acid	Cytokinin	Abscisic acid
Untreated	100 %	100 %	100 %	100 %
Roundup®	4 %	32 %	20 %	183 %
MegaGro**	497 %	103 %	250 %	60 %
RU+MegaGro	47 %	50 %	53 %	112 %

*Research by LT Biosyn., Riverwoods, IL **Natural plant growth stimulant

PreemergenceNoglyphosateglyphosate

Preemergence No glyphosate glyphosate

Failure to 'Bulk' of Russet Potatoes

Glyphosate frequency	How applied	No. growers	% Potatoes over 10 oz
None in the previous 2 yrs	None	5	35.3
1-2 in the previous 2 yrs	Burn dow	n 17	20.2
Preceding year	RR crop	5	5.4
	Total	# : 27 A	ve : 20.3

Effect of Residual Glyphosate in Soil on Plant Growth
Soybeans and potatoes on the left side were planted after hand weeding;

 Soybeans and potatoes on the right side were planted six days after glyphosate was applied to hand weeded soil.

12 % yield difference Soybeans

87 % yield difference Potatoes

After Olson, 2011

Effect of Glyphosate on Roundup Ready® Corn

Colorado State University, 2007 Mike Bartolo, Sr. Res. Scientist		Response of Roundup Ready® Corn to Zn & Mn,			
	% grain	Yield	% of	2007*	
Treatment	moisture	(bu/a) c	ontrol	NDSU Carrington	
Untreated*	15.6	234 a	100	Treatment Yie	ld (bu/a)
Glyphosate**	15.6	195 d	83	Glyphosate control	144
Glyphosate	15.6	221 b	94	Zn seed Treatment	156
+ Zn, Mn				Foliar applied Zn	158
Glyphosate + Mn, Zn, Fe, F	15.6 3	208 c	89	Foliar applied Zn+Mn	173
*Hand weeded, **1 lb a.i. + 1 pt AMS per acre			Seed + Foliar Zn	175	
Notes: UTC = genetic potential (with RR gene) Glyphosate reduces genetic potential 39 bu/a			Soil granular Zn sulfate	167	
Application of high Mn & Zn recovers some genetic potential, lower Mn & Zn recovers less			* All treatments received glyphosate		

Yield Response of Roundup Ready® Soybeans to Micronutrients						
In Treatment		Michigan Yield (bu				
Untreated	46	24	77	33		
Glyphosate only	57	33	65	8		
Glyphosate +	75	56	78	19		
Micronutrient	Mn	Mn	Mn	Fe		

Effect of Glyphosate on Roundup Ready® Corn

Colorado State University, 2007 Mike Bartolo, Sr. Res. Scientist		Response of Roundup Ready® Corn to Zn & Mn,			
	% grain	Yield	% of	2007*	
Treatment	moisture	(bu/a) c	ontrol	NDSU Carrington	
Untreated*	15.6	234 a	100	Treatment Yie	ld (bu/a)
Glyphosate**	15.6	195 d	83	Glyphosate control	144
Glyphosate	15.6	221 b	94	Zn seed Treatment	156
+ Zn, Mn				Foliar applied Zn	158
Glyphosate + Mn, Zn, Fe, F	15.6 3	208 c	89	Foliar applied Zn+Mn	173
*Hand weeded, **1 lb a.i. + 1 pt AMS per acre			Seed + Foliar Zn	175	
Notes: UTC = genetic potential (with RR gene) Glyphosate reduces genetic potential 39 bu/a			Soil granular Zn sulfate	167	
Application of high Mn & Zn recovers some genetic potential, lower Mn & Zn recovers less			* All treatments received glyphosate		

Glyphosate Resistant Weeds

It starts this way >>>> and >>>> Develops into this

Failed Promises of Touted Benefits

- ✓ Higher yields
- ✓ Fewer pesticides
- ✓ Less post-harvest loss
- ✓ Improved N-fixation
- Drought and salt tolerance
- ✓ Increased photosynthesis
- ✓ Greater root growth & function
- ✓ Disease resistance
- ✓ Lower risks (economic)
- ✓ Lower cost
- ✓ Greater safety
- ✓ Simpler management resistant weeds & pests

BETRAYAL OF THE PUBLIC TRUST

Detoxifying Glyphosate

In meristematic/reproductive tissues Ca, Mn, Si+Mn, Mn+Cu, Zn, Mn+Zn, Ni

In root exudates in soil

Broadcast: Gypsum

In furrow (or stem drench) t Gypsum (CaSO4) Manganese Ca + Mn Nickel, Zinc

Effect of in-furrow treatments					
<u>on Soybean tissue Mn</u>					
Treatment	Rainfed	Irrigated			
Lime	32a	29a			
Gypsum	38b	36b			

% Reduction in Alfalfa Nutrients by Glyphosate*

Nutrient % reduction compared with Non-RR

Nitrogen **Phosphorus Potassium** Calcium Magnesium Sulfur Boron Copper Iron Manganese Zinc

13 % 15 % 46 % 17 % 26 % 52 % 18 % 20 % 49 % 31 % 18 %

*Third year, second cutting analysis; Glyphosate applied one time in the previous year

<u>% Mineral Reduction</u> in Tissue of Roundup Ready® Soybeans Treated with Glyphosate

Plant tissue K Ca	Mg	Fe	Mn	Zn Cu
Young leaves 16 40	<u>28</u>	7	<u>29</u>	NS NS
Mature leaves 4 30	<u>34</u>	<u>18</u>	<u>48</u>	30 27
Mature grain 26	<u>13</u>	<u>49</u>	45	

Reduced:Yield26%Biomass24%

After Cakmak et al, 2009
Some SYMPTOMS of Glyphosate Damage (Sub-herbicidal depending on rate and exposure time) Low vigor, stunting, slow growth Leaf chlorosis (yellowing) - complete or between the veins Leaf mottling - sometimes with necrotic flecks or spots <u>Leaf distortion - small, curling, strap, wrinkling, 'mouse ear'</u> Abnormal stem proliferation ('witches broom') Bud, fruit abortion **V** Retarded regrowth after cutting (alfalfa, perennial plants) Lower yields, lower mineral value Predisposition to infectious diseases - NUMEROUS! Predisposition to insect damage Induced abiotic diseases - drought, winter kill, sun scald **V** Root stunting, poor growth, inefficient N-fixation and uptake Bark cracking after Univ. of Hawaii; Univ. of Connecticut, Ohio State University

"98 Reasons Not to Use Glyphosate" North Dakota Seed Guide, 2013

Nutrient Density of GMO & Non-GMO Corn, Iowa, 2012

Nutrient	GMO	Non-GMO	Nutrient	GMO	Non-GMO
Glyphosate	e 13	0	Mn	2	14
Formaldeh	yde 200	0	Fe	2	14
Test Wt.	57.5	61.5	Zn	2.3	14.3
Ν	7	46	Cu	2.6	16
Ρ	3	44	Со	0.2	1.5
K	7	113	Мо	0.2	1.5
Ca	14	6130	В	0.2	1.5
Mg	2	113	Se	0.6	0.3
S	3	42	CI	10	1

Degradation of Glyposate

Glyphosate (HO)₂-P-CH₂-N-CH₂-COOH) [glyphosate dehydrogenase [C-P lyase] + C-P lyase] Sarcosine AMPA* + glycine (CH₃NHCH₂COOH) [dephosphorylase/phosphorylase] Methylamine **Glycine + Formaldehyde** (NH₂-CH₂-COOH + HCHO) [methylamine dehydrogenase] or phosphorylase/dephosphorylase + PGA Formaldehyde (HCHO) $CO_2 + PGA$ *Toxic to RR plants PGA = PteroylGlutamic Acid

Plant Disease Prion-like proteins (biomatrix)

HLB cultured on yeast, 120 K

Wheat FHB cultured on Bacillus 6,000 X (L); 40,000 X (R)

Abortigenic Agent From Miscarried Faetal tissue

15 k X on hypha

45 k X on hypha **70 k X**

"Male fertility under threat as average sperm counts drop"*

- Study of 26,600 men in France found sperm concentration had decreased by 32% since the 1990s.
- Numbers steadily dropped by 2% per year from 1989 to 2005.
- Proportion of normally formed sperm also declined by about 1/3.

* M. Rolland et al., Hum Reprod. 2013 Feb;28(2):462-70.

Fertility in the US dropped 30 % in the last five years. USA Today, 2014

Occurrence

•Verified in IA, IL, KY, MI, NE, ND, SD, WI Sources: 'Environmental' Animal tissue Soybean meal **Placental tissue** Silage - fermented products Amniotic fluid **Corn grain** Semen **SDS Soybean plants Stomach contents** Manure Eggs Soil Milk

Fusarium solani fsp glycines mycelium

Potential Interactions of 'new entity' with Glyphosate

- Glyphosate affects plants (predisposes): Inhibits plant defenses Reduces nutrient content and efficiency [chemical and RR gene(s)] Increases root colonization Increases membrane permeability Surfactant affect for penetration of natural openings and wounds
- Glyphosate affects animals (predisposes): Inhibits aramatose system – endocrine hormone system Toxic to liver, placental, testicular, and kidney cells Reduced defense - liver function [from lower Mn, etc. in feed]
- Glyphosate affects pathogens: Stimulates growth and virulence (direct/indirect) Favors synergism, infection (as a carrier) Increases movement into plant tissues (water film for plant infection)

• Glyphosate affects the environment: Toxic to soil microbes that constrain plant pathogens Nutrient availability reduced

What is Known About the 'New' Entity

Characteristics

- Very small (EM visible at 38,000 X)-(size of a virus, prion, 'nanobacteria')
- Filterable passes through a bacterial filter
- Culturable self replicating
- Common in nature (- in soil)? -FL, IA, IL, IN,KY, MI, NE, ND, WI, others!
- 'High' temperature, formaldehyde, etc. tolerance

Synergist with bacteria and other microbes

Affect in animals (horses, cattle, sheep, pigs, poultry, humans)

- Causes infertility male and female
- Causes spontaneous abortions (miscarriage)
- Death of chicken embryos
- In milk from cows fed highly contaminated feed

Affect in plants

- High population in 'scorch' type diseases
- 'Extends' symptoms of Goss' wilt, HLB, Fus. Head blight & SDS (soybean)
- Seed-and feed-borne (?) in soybean seed and feed/food products

Biomatrix (Nanobacter)

- Self replicating, proteinaceous mineral
- Don't contain DNA or RNA
- Culturable with bacteria or fungi
- Resistant to proteases
- Resistant to autoclaving
- Serologically distinct
- Nano crystals growing in a biological system
- Associated with diseases
 - Alzheimers
 - Arthrosclerosis
 - Arthritus
- Protein altered by chelaters

Bt cotton

Hundreds of laborers in India reported allergic reactions to Bt cotton

Itching all over the body, eruptions, wounds, discoloration

"Morgellan's Disease"

Bt cotton Thousands of sheep died after grazing on Bt cotton plants

Buffalo (Warangal)

- Grazed on Bt cotton plants (1 day)
- Sick and unconscious for 2-3 days
- 13 deaths

Stomach lining

Summary of Findings

Clostridium botulinum is a ubiquitous soil organism

 Chronic toxic infection depends on predisposition by: Glyphosate in the feed Spore count in the feed

Glyphosate inhibits microbial antagonists of C. botulinum

 Glyphosate from feed can cause microbial imbalance and chronic botulism

• Glyphosate increases toxic fungi such as *Fusarium* spp.

 C. botulinum and C. perfringens are very tolerant of glyphosate

Are Bees (and Other Invertebrates) the Canaries in Our Coal mine?

Ecology for the Honeybee

Importance of the Honeybee

- Pollinator for plant reproduction
 - One-third of agricultural production
 - Ecologically important
- Honey
 - Nutrient source
 - 'Sugars'
 - Minerals

Probiotic source (10⁸/gm honey)

- Lactobacillus spp.
- Bifidobacteria spp.

Staphlococcus aureus (MRSA) Pseudomonas aeruginosa Enterococcus (VRE)

Some Crops Honeybees, etc. Pollinate

Relying on Bees

Some of the most valuable fruits, vegetables, nuts and field crops depend on insect pollinators, particularly honeybees.

	Crop value in billions 2006	Percentage pollinated by honeybees	Percentage of crop pollinated by HONEYBEES OTHER INSECTS OTHER
Soybeans	\$19.7	5%	
Cotton	5.2	16	
Grapes	3.2	1	
Almonds	2.2	100	
Apples	2.1	90	
Oranges	1,8	27	
Strawberries	1.5	2	
Peanuts	0.6	2	
Peaches	0.5	48	
Blueberries cultivated	0.5	90	
Distance for the	N 1970 M 1970 M 1970		Service and the service of the servi

Besides insects, other means of pollination include birds, wind and rainwater.

Sources: United States Department of Agriculture; Roger A. Morse and Nicholas W. Calderone, Cornell University

The New York Times

Interactions with Pesticides

Direct toxicity

- Endocrine hormone disruption
- Enzyme inhibition, mortality
- Indirect impact
 - Antibiotic effect
 - Mineral nutrient availability
 - Pollen, nectar, etc. availability

Most Common Pesticide Interactions

Neonicotinoid insecticides

- Endocrine hormone disrupters
 - Foraging activity
 - Queen activity
 - Brood development

Gyphosate herbicides/antibiotics

- Endocrine hormone disrupters
- Mineral chelators
- Antibiotic activity against beneficials
- GMO crops (RR and Bt)
 - Intestinal disruption

Phenoxy herbicides - <u>Future impact</u>

Endocrine hormone disrupters

Neonicotinoid Insecticides (enhanced with pyrethroids)

🔶 Use:

- Systemic seed treatments
- General insecticides

Effect on bees:

- Endocrine disruption

- Flight of the returning forager, navigation
- Foraging 'learning' skills
- Banned in some European countries

Genetically Engineered 2,4-D Resistance

- An older herbicide ('phenoxy' group)
 - Systemic in plants
- Strong endocrine hormone disrupting chemical
- Newly approved genetically engineered crops
 - Applied directly to crop grown to harvest repeatedly
 - Already have 2,4-D resistant weeds
 - Toxic exposure to honeybees

Glyphosate

- Indiscriminate use (330 million pounds/yr):
 - Systemic broad-spectrum general use herbicide
 - Herbicide of choice for 85+% of GE plants
- Effect on bees
 - Potent endocrine hormone disrupter
 - Potent antibiotic to Lactobacillus, Bifidobacterium, etc. - essential microbes for nutrition and pest resistance (immunity)
 - Strong mineral chelater in the bee, plants, & environment

"Glyphosate, Three Rivers, and Anencephaly", Yakima Harold Republic

Market Impact of GE on Honey

(Other products: wax, protein, etc.)

- Containing:
 - GE pollen (genetics)
 - Glyphosate (or other pesticide)
 - Mycotoxins pathogens
- Domestic market
 - Conventional (depends on labeling)
 - Organic contamination
- Export market
 - Rejection
 - Unknown factor

Some Common Honeybee Concerns

- Colony Collapse Disorder
 - Micronutrient deficient bees
 - Starving with food available
 - Disoriented foraging
 - Pest susceptible
- European Foul Brood
- Varroa mites
- Amoeba and Nosema diseases
- Viruses

Antibiotic Activity of Glyphosate

Honey Crop Microbiome

- Lactobacillus spp.
 Bifidobacterium spp.
 Function:
 - Nutrition
 - Digestion Mineral availability
 - Nutrient production (vitamins, growth factors, etc.)
 - Immunity/protection

THE LETHAL IMPACT OF ROUNDUP ON AQUATIC AND TERRESTRIAL AMPHIBIANS

RICK A. RELYEA¹

Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 USA

Abstract. The global decline in amphibian diversity has become an international environmental problem with a multitude of possible causes. There is evidence that pesticides may play a role, yet few pesticides have been tested on amphibians. For example, Roundup is a globally common herbicide that is conventionally thought to be nonlethal to amphibians. However, Roundup has been tested on few amphibian species, with existing tests conducted mostly under laboratory conditions and on larval amphibians. Recent laboratory studies have indicated that Roundup may be highly lethal to North American tadpoles, but we need to determine whether this effect occurs under more natural conditions and in post-metamorphic amphibians. I assembled communities of three species of North American tadpoles in outdoor pond mesocosms that contained different types of soil (which can absorb the pesticide) and applied Roundup as a direct overspray. After three weeks, Roundup killed 96–100% of larval amphibians (regardless of soil presence). I then exposed three species of juvenile (post-metamorphic) anurans to a direct overspray of Roundup in laboratory containers. After one day, Roundup killed 68–86% of juvenile amphibians. These results suggest that Roundup, a compound designed to kill plants, can cause extremely high rates of mortality to amphibians that could lead to population declines.

Glyphosate in food, especially GM (genetically manipulated) foods)

Glyphosate allowances in US foods ²⁵	US EPA "Crop Group 15": Cereal Grains			
Food	Parts per million	Barley (Hordeum spp.)		
Barley, bran	30	Buckwheat (Fagopyrum esculentum)		
Beet, sugar, roots	10	Corn (Zea mays)		
Canola, seed	20	Millet, pearl (Pennisetum glaucum)		
Flax, meal	8.0	Millet, proso (Panicum milliaceum)		
Grain, cereal, group 15 except field	30	Oats (Avena spp.)		
corn, popcorn, rice, sweet corn, wild rice		Popcorn (Zea mays var. everta)		
Peppermint, tops	200	Rice (Oryza sativa)		
Spearmint, tops	200	Rye (Secale cereale)		
Sugarcane, cane	2.0	Sorghum (milo) (Sorghum spp.)		
Sugarcane, molasses	30	Triticale (<i>Triticum-Secale</i> hybrids)		
Sunflower, seed	85	Wheat (Triticum spp.)		
Tea, instant	7.0	Wild rice (Zizania aquatica)		

Americans Eat Their Weight In Genetically Engineered Food

By: Renée Sharp, Director of Research

MONDAY, OCTOBER 15, 2012 Americans are eating their weight and more in genetically engineered food every year, a new Environmental Working Group analysis shows. On average, people eat an estimated 193 pounds of genetically engineered food in a 12-month period. The typical American adult weighs 179 pounds.

These figures raise a question: If you were planning on eating your body weight of *anything* in a year, wouldn't you want tomake sure it was safe to eat?

Shockingly, virtually no long-term health studies have been done on consumption of genetically engineered food.

owa.org/20m2g/2012/10/2moric2ne-oat-thoir-woight-gonotically-ongineorod-

Maternal and fetal exposure to pesticides associated to genetically modified foods in Eastern Townships of Quebec, Canada.

<u>Reprod Toxicol.</u> 2011 May;31(4):528-33. Epub 2011 Feb 18.

Aris A, Leblanc S

Department of Obstetrics and Gynecology, University of Sherbrooke Hospital Centre, Sherbrooke, Quebec, Canada. aziz.aris@usherbrooke.ca

Abstract

Pesticides associated to genetically modified foods (PAGMF), are engineered to tolerate herbicides such as glyphosate (GLYP) and gluphosinate (GLUF) or insecticides such as the bacterial toxin bacillus thuringiensis (Bt). The aim of this study was to evaluate the correlation between maternal and fetal exposure, and to determine exposure levels of GLYP and its metabolite aminomethyl phosphoric acid (AMPA), GLUF and its metabolite 3-methylphosphinicopropionic acid (3-MPPA) and Cry1Ab protein (a Bt toxin) in Eastern Townships of Quebec, Canada. Blood of thirty pregnant women (PW) and thirty-nine nonpregnant women (NPW) were studied. Serum GLYP and GLUF were detected in NPW and not detected in PW. Serum 3-MPPA and CryAb1 toxin were detected in PW, their fetuses and NPW. This is the first study to reveal the presence of circulating PAGMF in women with and without pregnancy, paving the way for a new field in reproductive toxicology including nutrition and utero-placental toxicities.

Copyright © 2011 Elsevier Inc. All rights reserved.

US National Library of Medicine National Institutes of Health

Agent Orange Deformities

Potential Interacting Sites of Transgenes and Soil Microbes (after Dunfield and Germida, 2004)

Glyphosate in Human Urine (Urbanites) & Dairy Cows

City	No.	Male Female			Dairy Glyp*.		Dairy Glyp.	
1	44	10.3*	6.1		Α	9	Е	37
2	22	16.0	2.7		В	21	F	38
3	19	60.1	8.3		С	22	G	46
4	22	23.5	13.8		D	25	Н	102
*ppb glyphosate			*ppm					
Permitted in cereals, soybean, corn = 20 ppm								
Permitted in alfalfa = 400 ppm Corn silage = 100 ppm								
Permitted in oils = 20-40 ppm								
Long-term toxicity to liver, kidney, etc. tissues = 0.1 ppbillion								
Long-term carcinogenicity = 0.1 ppb								
Antibiotic to beneficial enteric (GI) bacteria – 0.1 nnm								

Antibiotic to beneficial enteric (GI) bacteria = 0.1 ppm

Crop Acreage Treated with Glyphosate & Rate / Acre*

Rate/acre (a.i) % Acreage treated 100 2.0 90 1.8 80 1.6 70 1.4 **Roundup Ready**® **60** 1.2 Rate per acre crops grown **50** 1.0 **40** 0.8 Crop_acreage treated 30 0.6 20 0.4 10 0.2 0 0.0 **1990** 2000 1995 2005 2010

*Does not include the millions of acres of non-crop use
Birth Defects Based on RR Soybean Acreage & Glyphosate drift -Cordoba, Argentina area

- 447 % increase in birth defects (1998-2008)
 - Heart Anaphlactoid purpura
 - Musculoskeletal Thyroid
- Increased miscarriages & other reproductive failures
- Cancers in children- and adults, Liver diseases increased
- Neurological disorders increased esp. in children

• Acute allergies increased

Birth Defects Based on RR Soybean Acreage & Glyphosate drift -Cordoba, Argentina area

Ruptured purpura

Birth Defects from Endochrine Hormone Disruption in Mammals

"Underbite and cleft palate are epidemic in human newborns. These malformations on human newborns are similar and comparable to underbites and cleft palate on other mammal young and to short upper bill and holes in the upper bills of hatchling birds. These malformations are definitive symptoms of disruption of the thyroid hormones during development in the womb or egg." (Hoy, 2011)

Some Conditions Associated with Autism

Disrupted gut bacteria
Depleted serotonin supply
Deficiency in sulfur metabolites

Is there a toxic substance that is currently on the rise in our environment that could account for these comorbidities?

Glyphosate: Some Biological Effects*

- Depletes aromatic amino acids and methionine
- Disrupts gut bacteria
 - Studies with chickens, cows and pigs show overgrowth of pathogens in gut
- Disrupts cytochrome P450 (CYP) enzymes which are involved in many biological functions
- Depletes important minerals
 - Calcium, manganese, zinc, cobalt, iron,
- Likely impairs sulfate synthesis and sulfate transport

Genetically Engineered for Insect Toxicity (and/or herbicide tolerance - not resistance!)

- Plants produce a chemical insecticide
- Insects develop resistance to the insecticide*
- Higher concentrations of plant produced insecticide
- Natural biological controls are killed by herbicide
- Insecticide remains in food/feed
 - Resistant to digestion & degradation
 - Toxic to man and animals
- Man produces insecticide

[*Similar with development of resistant weeds!]

Potential Far-Reaching Impact of Glyphosate

<u>Human</u>

Mineral malnourished, Allergies, Fertility, Disease MYCOTOXINS

Alzhøimer⁴s, gout, diabetes, viruses, Parkinson's, etc.

Vegetables, fruits, grainglyphosate

Lower nutrient minerals (Cu, Fe, Mg, Mn, Zn) Carriers for epiphytes (E. coli, etc.) (Changed epiphytic flora)

Glyphosate (Chelation)

Mn

Plants, feed

Lower nutrient minerals (Cu, Fe, Mn, Zn) Disease predisposition (Scab, take-all, CVC) Nycotoxins, glyphosate

Environment

Biological imbalance N fixation, Mn availability Potassium immobilization Biological controls GLYPHOSATE ACCUMULATION

Animals

Mineral malnourished Slow growth, Allergies, Disease <u>MYCOTOXINS</u> Scours, death, BSE, wasting, predisposition to botulism

Effect of Surfactants on Goss' & Stewart's Wilt*

Bacterial wilt of Alfalfa - *Clavibacter insidiosum*

What has Changed?

• Change:

Increased disease New diseases Low mineral nutrition Resistant weeds and insects

• Precedent:

Victoria blight (oats) H. carbonum disease (toxin) Texas male-sterile gene (corn leaf blight epidemic) Glyphosate-resistance gene????? Glyphosate nullifies genetic resistance in sugar beets, corn, soybean, etc.

• Why (vulnerability)?

Predisposition Direct toxicity Gene flow No ecological relief - single source approach No, Kevin, there is no consensus on the safey of GMOs. Quite the contrary: http://gmofreeusa.org/gmos-are-top/there-is-no-scientificconsensus-on-the-safety-of-gmos/

http://gmofreeusa.org/gmos-are-top/gmo-science-studies/

"We know they are safe."

Kevin Folta Interim Chairman, Horticultural Sciences Univesity of Florida

www.facebook.com/amofreeusa

"Any scientist who tells you that GMOs are safe or not to worry about it, is either ignorant of the history of science or is deliberately lying. Nobody knows what the long term effect will be." David Suzuki Geneticist

www.gmofreeuse.org www.facebook.com/gmofreecanadagroup

GMO Free USA

Flawed Safety Evaluations

Internal EPA Memos

1983 EPA Scientist : "Our viewpoint is one of protecting the public health when we see suspicious data." Unfortunately, EPA has not taken that conservative viewpoint in its assessment of glyphosate's cancer causing potential."

"There are no studies available to NCAP evaluating the carcinogenicity of Roundup or other glyphosate-containing products. Without such tests, the carcinogenicity of glyphosate-containing products is unknown."

"Tests done on glyphosate to meet registration requirements have been associated with fraudulent practices." "Countless deaths of rats & mice are not reported." "Data tables have been fabricated" "There is a routine falsification of data"

"It is also somewhat difficult not to doubt the scientific integrity of a study when the IBT stated it took specimens from the uteri of male rabbits for examination."

Wikipedia, 2012

Bt Egg Plant Toxicology Evaluation Gallagher, 2011

Summary:

* The study failed to meet international standards for evaluation (OECD 1998; Codex Alimentarious, 2003 c-c)

* There were serious departures from normal scientific standards

* Studies submitted are 'woefully inadequate to determine safety'

* Consists of substandard and extremely misleading interpretation of the results presented

* Independent study can not uphold the government report of approval

Failed to Meet International Standards

- * Insufficient time for evaluation 14 and 90 day
- *** Ignored toxic end-points**
- * Evaluated only one dose rate for 78 of the 90 days
- ***** Dose level used was lower than anticipated exposure
- * Major health problems in animals found were ignored Organ and system damage – ovaries at half weight, enlarged spleens, White blood cells 35-40% higher, liver damage (elevated bilirubin & plasma acetylcholinesterase) immune function changes (elevated eosinophils)
- ***** Failed to evaluate:
- **Neurological function**
- **Behavioral effects**
- **Reproductive performance**
- **Biological resilience**

Concentration of insecticide protein Cry1A(c) not measured

Failure to Honor

- * Scientific Precautionary Principle
- **1. Margin of safety to prevent damage**
- 2. Anticipation of unknowns
- 3. Initiate as a "pilot project"
- ***** Not "Substantially Equivalent"- Significant deviation in:
- **1. Expression of 'end products' (new/tissues in)**
- **2. More like virus infection than sexual transfer**
- **3. Functional and regulatory controls absent**
- 4. Greatly extended exposure
- 5. Production, quality, safety & toxicity differ

After Brown, 2000

Scientifically Irresponsible

- Untested end products (toxicology) New proteins, Bt toxin
- Irreversible consequences
 1. Gene contamination
 2. Health damage
- * Basic infrastructure attacked food production
- * Unintended consequences ignored increased disease
- * Increased toxic chemical exposure food, environment
- * Decreased production efficiency food/feed
- * Unknown end points unregulated gene flow

